Predicting Missing Links via Local Information
نویسندگان
چکیده
Missing link prediction of networks is of both theoretical interest and practical significance in modern science. In this paper, we empirically investigate a simple framework of link prediction on the basis of node similarity. We compare nine well-known local similarity measures on six real networks. The results indicate that the simplest measure, namely common neighbors, has the best overall performance, and the Adamic-Adar index performs the second best. A new similarity measure, motivated by the resource allocation process taking place on networks, is proposed and shown to have higher prediction accuracy than common neighbors. It is found that many links are assigned same scores if only the information of the nearest neighbors is used. We therefore design another new measure exploited information of the next nearest neighbors, which can remarkably enhance the prediction accuracy. PACS. 89.75.-k Complex systems – 05.65.+b Self-organized systems
منابع مشابه
Efficient Link Prediction with Node Clustering Coefficient
Predicting missing links in incomplete complex networks efficiently and accurately is still a challenging problem. The recently proposed CAR (Cannistrai-Alanis-Ravai) index shows the power of local link/triangle information in improving link-prediction accuracy. With the information of level-2 links, which are links between common-neighbors, most classical similarity indices can be improved. Ne...
متن کاملLink Prediction via Generalized Coupled Tensor Factorisation
This study deals with the missing link prediction problem: the problem of predicting the existence of missing connections between entities of interest. We address link prediction using coupled analysis of relational datasets represented as heterogeneous data, i.e., datasets in the form of matrices and higher-order tensors. We propose to use an approach based on probabilistic interpretation of t...
متن کاملPredicting missing links and identifying spurious links via likelihood analysis
Real network data is often incomplete and noisy, where link prediction algorithms and spurious link identification algorithms can be applied. Thus far, it lacks a general method to transform network organizing mechanisms to link prediction algorithms. Here we use an algorithmic framework where a network's probability is calculated according to a predefined structural Hamiltonian that takes into...
متن کاملPredicting missing links in complex networks based on common neighbors and distance
The algorithms based on common neighbors metric to predict missing links in complex networks are very popular, but most of these algorithms do not account for missing links between nodes with no common neighbors. It is not accurate enough to reconstruct networks by using these methods in some cases especially when between nodes have less common neighbors. We proposed in this paper a new algorit...
متن کاملPredicting link directions via a recursive subgraph-based ranking
Link directions are essential to the functionality of networks and their prediction is helpful towards a better knowledge of directed networks from incomplete real-world data. We study the problem of predicting the directions of some links by using the existence and directions of the rest of links. We propose a solution by first ranking nodes in a specific order and then predicting each link as...
متن کامل